Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE			
V	PART - III	CORE ELECTIVE-2	U23MA5E2A	NUMERICAL METHODS			

Date & Session: 13.11.2025/FN Time: 3 hours Maximum: 75 Marks

	T	1	T										
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (10 X 1 = 10 Marks)</u> Answer <u>ALL</u> Questions.										
CO1	K1	1.	equations. a) Jacobi and R	Give the name of any two iteration methods for solving algebraic equations. a) Jacobi and Raphson b) Gauss Jacobi and Gauss-seidel c) Horner's and Jacobi d) Raphson and Horner's									
CO1	K2	2.	Newton Raphso a) tangents		known as the method o c) cosines								
CO2	K1	3.	$\Delta [f(x)] = \underline{\hspace{1cm}}$ a) f(x+h)-f(x)	•	c) $f(x+h) + f(x)$	d) f(x-1)							
CO2	K2	4.	$\Delta [2^x] = $ a) 2x	•	c) h-1	d) x-1							
CO3	K1	5.	intervals.	-	on formula is used only f								
CO3	K2	6.	required near th	he end of the tab	la is used when interpol le value. c) divided differen								
CO4	K1	7.	The order of the a) 1		tion $y_{n+2} - 2y_{n+1} + y_n = 2^n$ c) 2								
CO4	K2	8.	a) x-2	the value of yis b) (x-2) ²	c) x-1	d) (x-3)							
CO5	K1	9.	Error in simpso a) h	on's rule is of ord b) h+1	er c) h ²	d) h ⁴							
CO5	K2	10.	rule appro trapezoids. a) triangular	ximates the integ	ral by the sum of the ar	eas of n d) Horner's							

Course Outcome	Bloom's K-level	Q. No.	SECTION – B (5 X 5 = 25 Marks) Answer ALL Questions choosing either (a) or (b)											
CO1	К3	11a.	Find the value $\sqrt{12}$ of to four places of decimals by Newton-Raphson method. (OR)											
CO1	КЗ	11b.		Find the positive real root of $x \log_{10} x = 1.2$ using the bisection method in four iterations.										
CO2	КЗ	12a.	Find the first a	and second or	der diffe (O		for $f(x) = a$	b ^{ex} .						
CO2	КЗ	12b.	Find the sixth	term of the s	equence	2,6,12,	20,30,							
CO3	K4	13a.	If $y(75) = 246$,	y(80) = 202, y	y(85) = 1 (O		0) = 40 fine	d y(79).						
CO3	K4	13b.												
CO4	K4	14a.	Given $u_0 = 5$; $\Delta^3 u_0$ and $\Delta^4 u_0$.	u ₁ = 15, u ₂ =	57 and		at x=0 and	72 at x	=2. Find					
CO4	K4	14b.	Find the gradic a datum line o		d at the	middle	•		n above					
			Y 135		157	183	201	205	193					
CO5	K5	15a.	•0	Evaluate $\int_0^1 e^{-x^2} dx$ by dividing the range into 4 equal parts using Trapezoidal rule.										
CO5	K5	15b.	Find the value of log 2 $^{1/3}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using simpson's 1/3 rule with h=0.25.											

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Questions choosing either (a) or (b)</u>
CO1	К3	16a.	Solve the following system of equations using Gauss Seidel iteration method. $6x+15y+2z=72$; $x+y+54z=110$; $27x+6y-z=85$.
CO1	КЗ	16b.	Find the real root lying between 1 and 2 of the equation $x^3-3x+1=0$ upto 3 places of decimals by using Regula-falsi method.
CO2	K4	17a.	Find the second difference of the polynomial $f(x) = x^4 - 12 x^3 + 42 x^2 - 30x + 9$ with h=2. (OR)
CO2	K4	17b.	If $y = \frac{1}{(3x+1)(3x+4)(3x+7)}$ show that $\Delta^2 y = \frac{108}{(3x+1)(3x+4)(3x+7)(3x+10)(3x+13)}.$
			$\Delta^2 y = \frac{108}{(3x+1)(3x+4)(3x+7)(3x+10)(3x+13)} .$

CO3	K4	18a.	Construct Newton's forward interpolation polynomial for the following data. Use it to find the value of y for x=5.												
			x 4 6							8			10		
			7		1 1			3		8				16	
				(OR)									10		
CO3	K4	18b.	Using Newton's divided difference formula evaluate f(8) given that										hat		
			X		4	5		7	7	10 11			13		
			f(x)		48	100		294		900 121		0	2028		
CO4	K5	19a.	Find y'(x) giver	1										
			X	0		1			2		3		4	4	
			y(x)	1		1			15		40		8.	5	
			Hence f	ind y'(x	x) at x=	0.5.									
								(0	•	_	_		_		
CO4	K5	19b.	From th		_							deriva	atives	s of	
			y=log _e x						•			t thoac	noir	ata	
			Also cal				ies c	וו נו	ie deri	vauve	sa	t mese	pon	118.	
			x	x 500 510 520 530 540 550								550			
			y=loge		2146	6.2344	1 6			6.2729 6.29			6.3099		
CO5	K5	20a.	Δ 011670	A curve passes through the points as given in the table. Find (i) the											
003	KS	20a.		_		curve t			_				ma (ij tiic	
					5				,				a abo	out the x-	
			axis.			J			J		0				
			X	1	2	3	4	4 5		6		7	8	9	
			у	0.2	0.7	1	1.3	3	1.5	1.7	7	1.9	2.1	2.3	
005		0.01			_			(O)	R)						
CO5	K5	20b.	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Romberg's method correct to 4 decimal												
			places. Hence deduce an approximate value of π .												